Quantum Computing @ MEF

Background

Ana Neri
ana.i.neri@inesctec.pt

1 Quantum States

Models of computation often put at center stage a notion of state and a corresponding notion of state transition BM17. In the quantum world, states usually involve superpositions, angles, and lengths; or in other words, they involve aspects related to geometry. This suggests us to familiarise with both the notion of a vector space and (the more refined) notion of an inner product space. It also suggests us to delve deep into the inner workings of maps between vector spaces and maps between inner product spaces, both intuitively yielding a notion of a quantum state transition (i.e. a quantum operation).

1.1 Vector spaces

Let \mathbb{C} denote the set of complex numbers.
Definition 1 (Vector Space). A vector space (over the complex numbers) ${ }^{1}$ is a set V together with an 'addition' operation $+: V+V \rightarrow V$, a 'multiplication' operation $: ~ \mathbb{C} \times V \rightarrow V$, a 'zero' element $0 \in V$, and an 'inverse' operation $-: V \rightarrow V$ such that the following equations hold for arbitrary $v, u, w \in V, s, r \in \mathbb{C}$:

$$
\begin{array}{rlrl}
v+(u+w) & =(v+u)+w & v+u & =u+v \\
v+0 & =v & v+(-v) & =0 \\
(s r) \cdot v & =s \cdot(r \cdot v) & 1 \cdot v & =v \\
s \cdot(v+u) & =s \cdot v+s \cdot u & (s+r) \cdot v & =s \cdot v+r \cdot u
\end{array}
$$

To keep notation simple we will often omit the dot of the scalar multiplication, i.e. we will write expressions $s \cdot v$ simply as $s v$.

Example 1. The complex numbers themselves form a vector space and the set \mathbb{C}^{2} of pairs of complex numbers also forms a vector space. This last space underlies the mathematical representation of the state of a qubit. Recall that a qubit is the unit in quantum information. Later on we will see that our notion of state corresponds exactly to the state of a sequence of qubits.

[^0]
Exercise 1.

1. Show that for any finite set n we can build a vector space \mathbb{C}^{n} over the complex numbers.
2. Show also that the set $\operatorname{Mat}_{\mathbb{C}}(n, m)$ of matrices with n lines and m columns and whose values are complex numbers also forms a vector space (hint: observe that matrices can be given a functional representation).

Exercise 2.

Consider the following matrices:

$$
I d=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; X=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] ; Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] ; H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] ; S=\left[\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right]
$$

Determine each of the following:

1. $Z \cdot S$
2. $S \cdot S$
3. $H \cdot H$
4. $H \cdot X \cdot H$

Definition 2 (Linear maps a.k.a. linear operators or simply operators). Consider two vector spaces V and W. A linear map $f: V \rightarrow W$ is a function that satisfies the equations,

$$
f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right) \quad f(s v)=s f(v)
$$

We call f a linear isomorphism or simply isomorphism if it is bijective. When such is the case, we say that V and W are isomorphic to each other (i.e. essentially the same), in symbols $V \simeq W$.

Exercise 3.

Show that if $f: V \rightarrow W$ and $g: W \rightarrow U$ are linear maps then their composition $g \cdot f: V \rightarrow U$ is also a linear map.

A crucial concept for our notion of state and state transition is that of a tensor. In essence, it allows to mathematically represent the state of a sequence of qubits (instead of working with just one qubit).

Definition 3 (Tensor). Let V and W be two vector spaces. Their tensor, denoted by $V \otimes W$, is the vector space consisting of all linear combinations $\sum_{i \leq n} s_{i}\left(v_{i} \otimes w_{i}\right)$ with $s_{i} \in \mathbb{C}, v_{i} \in V$, $w_{i} \in W$, that satisfies the equations,

$$
\begin{array}{rlrl}
v \otimes w+u \otimes w & =(v+u) \otimes w & v \otimes w+v \otimes u & =v \otimes(w+u) \\
s(v \otimes w) & =(s v) \otimes w & s(v \otimes w) & =v \otimes(s w)
\end{array}
$$

Another concept that will be imensely useful in the course is that of a basis.
Definition 4 (Basis). A basis for a vector space V is a set $B \subseteq V$ of vectors that respects the following conditions:

- for every $v \in V$, we can find $v_{1}, \ldots, v_{n} \in B$ and $s_{1}, \ldots, s_{n} \in \mathbb{C}$ such that $\sum_{i \leq n} s_{i} v_{i}=v$
- for every sequence of vectors $v_{1}, \ldots, v_{n} \in B$ and sequence of complex numbers $s_{1}, \ldots, s_{n} \in$ \mathbb{C} if $\sum_{i \leq n} s_{i} v_{i}=0$ then $s_{i}=0$ for all $i \leq n$.

Example 2. The set $\{1\}$ is a basis for \mathbb{C} and the set $\{(1,0),(0,1)\}$ is a basis for \mathbb{C}^{2}.
Let B be a basis for a vector space V. If B has n elements we say that V is n-dimensional. If B is finite we say that V is finite-dimensional.

In this course we are primarily interested in finite-dimensional vector spaces. Intuitively, this is justified by the fact we will only need to work with a finite number of qubits at a time. Thus from now on all vector spaces that we consider are finite-dimensional.

Exercise 4.

Let n be a natural number and \mathbb{C}^{n} be the vector space of n-tuples of complex numbers. Present a basis for \mathbb{C}^{n} and subsequently indicate its dimension.

Matrices provide a very convenient way of representing states and also of representing state transitions. Let us analyse how such a representation works. Let V and W be vector spaces, $\left\{b_{1}, \ldots, b_{n}\right\}$ a basis for V and $\left\{c_{1}, \ldots, c_{m}\right\}$ a basis for W. Consider then a linear map $f: V \rightarrow W$ and observe that for every $i \leq n$ we have $f\left(b_{i}\right)=\sum_{j \leq m} s_{i j} c_{j}$ for some $s_{i 1}, \ldots, s_{i m} \in \mathbb{C}$. We obtain a matrix representation $M \in \operatorname{Mat}_{\mathbb{C}}(m, n)$ of f by setting $M_{j i}=s_{i j}$. Conversely, consider a matrix $M \in \operatorname{Mat}_{\mathbb{C}}(m, n)$. It induces a linear map $f: V \rightarrow W$ by setting $f\left(b_{i}\right)=\sum_{j \leq m} M_{j i} c_{j}$. Exercise 5.

1. What is the matrix representation of the linear map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $f(1,0)=(0,1)$ and $f(0,1)=(1,0)$?
2. What is the matrix representation of the linear map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $f(1,0)=$ $\frac{1}{\sqrt{2}}(1,0)+\frac{1}{\sqrt{2}}(0,1)$ and $f(0,1)=\frac{1}{\sqrt{2}}(1,0)-\frac{1}{\sqrt{2}}(0,1)$?

Before moving forward in the course, we need to fix extra notation. Specifically, we will use $M: n \rightarrow m$ to denote a matrix M with n lines, m columns, and whose values are complex numbers. Also for two matrices $M: n \rightarrow m$ and $N: m \rightarrow o$, we will use $M N: n \rightarrow o$ to denote the matrix multiplication of M with N. Finally, given a linear map $f: V \rightarrow W$ such that V and W have dimension n and m, respectively, we will use $M_{f}: m \rightarrow n$ to denote the corresponding matrix.

Exercise 6.

Let $B \subseteq V, C \subseteq W$ be bases for vector spaces V and W, respectively. Show that the set $\{b \otimes c \mid b \in B, c \in C\}$ is a basis for $V \otimes W$.

Consider matrices $M: n \rightarrow m$ and $N: o \rightarrow p$. Their tensor $M \otimes N: n \cdot o \rightarrow m \cdot p$ (also called Kronecker product) is defined by,

$$
M \otimes N=\left[\begin{array}{ccc}
M_{1,1} \cdot N, & \ldots, & M_{1, m} \cdot N \\
\vdots & \vdots & \vdots \\
M_{n, 1} \cdot N, & \ldots, & M_{n, m} \cdot N
\end{array}\right]
$$

Exercise 7.

Consider the matrices in exercise 2. Determine each of the following:

1. $H \otimes I d$
2. $I d \otimes X$
3. $I d \otimes(H \cdot Z \cdot H)$

Definition 5 (Tranpose). Let A be a matrix. $A[j, k]$ represents the j-th row, k-th column element of A. The transpose of A is

$$
\begin{equation*}
A^{T}[j, k]=A[k, j] \tag{1}
\end{equation*}
$$

Definition 6 (Conjugate).

$$
\begin{equation*}
\bar{A}[j, k]=\overline{A[j, k]} \tag{2}
\end{equation*}
$$

Definition 7 (Adjoint).

$$
\begin{equation*}
A^{\dagger}=\left(\bar{A}^{T}\right)=\left(\overline{A^{T}}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
A^{\dagger}[j, k]=\overline{A[k, j]} \tag{4}
\end{equation*}
$$

1.2 Inner product spaces

Recall that for some complex number c the expression c^{*} denotes the complex conjugate of c.
Definition 8 (Inner product space). An inner product space is a vector space V equipped with a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ (the inner product) that satisfies the conditions,

$$
\begin{aligned}
\left\langle v, \sum_{i \leq n} s_{i} v_{i}\right\rangle & =\sum_{i \leq n} s_{i} \cdot\left\langle v, v_{i}\right\rangle & \langle v, w\rangle & =\langle w, v\rangle^{*} \\
\langle v, v\rangle & \geq 0 & \langle v, v\rangle & =0 \text { entails } v=0
\end{aligned}
$$

for all $v, v_{i}, w \in V$ and $s_{i} \in \mathbb{C}$. ${ }^{2}$
Recall that a norm over a vector space V provides a notion of length to the vector space and is formally defined as a function $\|\cdot\|: V \rightarrow[0, \infty)$ such that the following conditions are satisfied,

$$
\|v\|=0 \text { iff } v=0 \quad\|s \cdot v\|=|s| \cdot\|v\| \quad\|v+w\| \leq\|v\|+\|w\|
$$

for all $v, w \in V, s \in \mathbb{C}$. Moreover, every inner product space V induces a norm $\|\cdot\|: V \rightarrow[0, \infty)$ defined by $\|v\|=\sqrt{\langle v, v\rangle}$.

As we will see, the mathematical representation of the state of n-qubits is a vector $v \in \mathbb{C}^{2^{n}}$ with norm $\|v\|=1$.

[^1]Exercise 8 (Vector normalisation).
Let $v \in V$ be a vector. Show that,

$$
\left\|\frac{v}{\|v\|}\right\|=1
$$

Definition 9 (Orthonormal basis). Two vectors $v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A basis B for an inner product space V is called orthonormal if all elements of B have norm 1 and all elements $v \neq w \in B$ are orthogonal to each other.

Exercise 9.

Show that the basis $\{(1,0),(0,1)\}$ for \mathbb{C}^{2} is orthonormal.
Definition 10 (Tensor). Let V and W be two inner spaces. Their tensor, denoted by $V \otimes W$, is the tensor of V and W as vector spaces equipped with the function,

$$
\left\langle\sum_{i \leq n} s_{i}\left(v_{i} \otimes w_{i}\right), \sum_{j \leq m} r_{j}\left(v_{j} \otimes w_{j}\right)\right\rangle=\sum_{i \leq n, j \leq m} s_{i}^{*} r_{j} \cdot\left\langle v_{i}, v_{j}\right\rangle \cdot\left\langle w_{i}, w_{j}\right\rangle
$$

When working with linear maps $f: V \rightarrow W$ between inner product spaces V and W we are often interested in those maps that are isometric.

Definition 11 (Isometry). Consider inner product spaces V and W and a linear map $f: V \rightarrow$ W between them. We call f an isometry if the equation,

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\langle f\left(v_{1}\right), f\left(v_{2}\right)\right\rangle
$$

holds for all $v_{1}, v_{2} \in V$. Equivalently, f is an isometry iff $\|v\|=\|f(v)\|$ for all $v \in V$.
A key property of isometries is they always send unit vectors to unit vectors (because isometries preserve norms). In the particular case of $V=W=\mathbb{C}^{2^{n}}$, this means that quantum states are always mapped to quantum states (and not to something else).

Additionally, quantum physics postulates that quantum operations on an isolated system must be reversible. In other words, maps $f: V \rightarrow W$ representing pure quantum operations must have an inverse $f^{-1}: W \rightarrow V$ which satisfies $f^{-1} \cdot f=f \cdot f^{-1}=\mathrm{id}$. Together with the notion of an isometry, this condition gives rise to the notion of a unitary map.

Definition 12 (Unitary maps). Let V and W be inner product spaces. A linear map $f: V \rightarrow W$ is called unitary if f is an isometry and surjectiv ξ^{3}

Postulate 1 (Quantum state and state transition). The state of an isolated quantum computer is given by a unit vector in the space $\mathbb{C}^{2^{n}}$ for some finite number n - the number n corresponds to the number of available qubits. State transitions arise via unitary maps, more concretely the state of an isolated quantum computer changes by an application of a unitary map. ${ }_{4}^{4}$

The notion of a unitary map can also be formulated via matrices, and often this alternative formulation is easier to work with: let us consider a linear map $f: V \rightarrow V$ and its matrix representation $M_{f}: n \rightarrow n$. Then f is unitary iff $M_{f}^{\dagger} M_{f}=M_{f} M_{f}^{\dagger}=I$.

[^2]
Exercise 10.

Show that the following two maps are unitary:

- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $f(1,0)=(0,1)$ and $f(0,1)=(1,0)$.
- $g: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $g(1,0)=\frac{1}{\sqrt{2}}(1,0)+\frac{1}{\sqrt{2}}(0,1)$ and $g(0,1)=\frac{1}{\sqrt{2}}(1,0)-\frac{1}{\sqrt{2}}(0,1)$.

Consider a linear map $f: V \rightarrow W$ between inner product spaces V and W. There exists a unique linear map $f^{\dagger}: W \rightarrow V$ such that for all $v \in V$ and $w \in W$ the equation,

$$
\langle f(v), w\rangle=\left\langle v, f^{\dagger}(w)\right\rangle
$$

holds. This map is precisely the functional representation of M_{f}^{\dagger}.

References

[BM17] Roberto Bruni and Ugo Montanari. Models of computation. Springer, 2017.
[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[^0]: ${ }^{1}$ In this course we will only consider vector spaces over the complex numbers. Note however that many of the mentioned results hold for a general field.

[^1]: ${ }^{2}$ Since we assume that all vector spaces at hand are finite-dimensional we can see inner product spaces as Hilbert spaces.

[^2]: ${ }^{3}$ Both conditions entail that f has an inverse f^{-1}.
 ${ }^{4}$ See a more general version of this postulate in Section 2.2 of NC02

