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1 Quantum States

Models of computation often put at center stage a notion of state and a corresponding notion
of state transition [BM17]. In the quantum world, states usually involve superpositions, angles,
and lengths; or in other words, they involve aspects related to geometry. This suggests us to
familiarise with both the notion of a vector space and (the more refined) notion of an inner
product space. It also suggests us to delve deep into the inner workings of maps between vector
spaces and maps between inner product spaces, both intuitively yielding a notion of a quantum
state transition (i.e. a quantum operation).

1.1 Vector spaces

Let C denote the set of complex numbers.

Definition 1 (Vector Space). A vector space (over the complex numbers) 1 is a set V together
with an ‘addition’ operation + : V + V → V , a ‘multiplication’ operation · : C × V → V , a
‘zero’ element 0 ∈ V , and an ‘inverse’ operation − : V → V such that the following equations
hold for arbitrary v, u, w ∈ V , s, r ∈ C:

v + (u + w) = (v + u) + w v + u = u + v

v + 0 = v v + (−v) = 0
(sr) · v = s · (r · v) 1 · v = v

s · (v + u) = s · v + s · u (s + r) · v = s · v + r · u

To keep notation simple we will often omit the dot of the scalar multiplication, i.e. we will
write expressions s · v simply as sv.

Example 1. The complex numbers themselves form a vector space and the set C2 of pairs
of complex numbers also forms a vector space. This last space underlies the mathematical
representation of the state of a qubit. Recall that a qubit is the unit in quantum information.
Later on we will see that our notion of state corresponds exactly to the state of a sequence of
qubits.

1In this course we will only consider vector spaces over the complex numbers. Note however that many of the
mentioned results hold for a general field.
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Exercise 1.

1. Show that for any finite set n we can build a vector space Cn over the complex numbers.

2. Show also that the set MatC(n, m) of matrices with n lines and m columns and whose
values are complex numbers also forms a vector space (hint: observe that matrices can be
given a functional representation).

Exercise 2.
Consider the following matrices:

Id =
[
1 0
0 1

]
; X =

[
0 1
1 0

]
; Z =

[
1 0
0 −1

]
; H = 1√

2

[
1 1
1 −1

]
; S =

[
1 0
0 i

]
;

Determine each of the following:

1. Z · S

2. S · S

3. H · H

4. H · X · H

Definition 2 (Linear maps a.k.a. linear operators or simply operators). Consider two vector
spaces V and W . A linear map f : V → W is a function that satisfies the equations,

f(v1 + v2) = f(v1) + f(v2) f(sv) = sf(v)

We call f a linear isomorphism or simply isomorphism if it is bijective. When such is the
case, we say that V and W are isomorphic to each other (i.e. essentially the same), in symbols
V ≃ W .

Exercise 3.
Show that if f : V → W and g : W → U are linear maps then their composition g ·f : V → U

is also a linear map.
A crucial concept for our notion of state and state transition is that of a tensor. In essence,

it allows to mathematically represent the state of a sequence of qubits (instead of working with
just one qubit).

Definition 3 (Tensor). Let V and W be two vector spaces. Their tensor, denoted by V ⊗ W ,
is the vector space consisting of all linear combinations ∑

i≤n si(vi ⊗ wi) with si ∈ C, vi ∈ V ,
wi ∈ W , that satisfies the equations,

v ⊗ w + u ⊗ w = (v + u) ⊗ w v ⊗ w + v ⊗ u = v ⊗ (w + u)
s(v ⊗ w) = (sv) ⊗ w s(v ⊗ w) = v ⊗ (sw)

Another concept that will be imensely useful in the course is that of a basis.

Definition 4 (Basis). A basis for a vector space V is a set B ⊆ V of vectors that respects the
following conditions:
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• for every v ∈ V , we can find v1, . . . , vn ∈ B and s1, . . . , sn ∈ C such that ∑
i≤n sivi = v

• for every sequence of vectors v1, . . . , vn ∈ B and sequence of complex numbers s1, . . . , sn ∈
C if ∑

i≤n sivi = 0 then si = 0 for all i ≤ n.

Example 2. The set {1} is a basis for C and the set {(1, 0), (0, 1)} is a basis for C2.

Let B be a basis for a vector space V . If B has n elements we say that V is n-dimensional.
If B is finite we say that V is finite-dimensional.

In this course we are primarily interested in finite-dimensional vector spaces. Intuitively,
this is justified by the fact we will only need to work with a finite number of qubits at a time.
Thus from now on all vector spaces that we consider are finite-dimensional.
Exercise 4.

Let n be a natural number and Cn be the vector space of n-tuples of complex numbers.
Present a basis for Cn and subsequently indicate its dimension.

Matrices provide a very convenient way of representing states and also of representing state
transitions. Let us analyse how such a representation works. Let V and W be vector spaces,
{b1, . . . , bn} a basis for V and {c1, . . . , cm} a basis for W . Consider then a linear map f : V → W

and observe that for every i ≤ n we have f(bi) = ∑
j≤m sijcj for some si1, . . . , sim ∈ C. We

obtain a matrix representation M ∈ MatC(m, n) of f by setting Mji = sij . Conversely, consider
a matrix M ∈ MatC(m, n). It induces a linear map f : V → W by setting f(bi) = ∑

j≤m Mjicj .
Exercise 5.

1. What is the matrix representation of the linear map f : C2 → C2 defined by f(1, 0) = (0, 1)
and f(0, 1) = (1, 0)?

2. What is the matrix representation of the linear map f : C2 → C2 defined by f(1, 0) =
1√
2(1, 0) + 1√

2(0, 1) and f(0, 1) = 1√
2(1, 0) − 1√

2(0, 1)?

Before moving forward in the course, we need to fix extra notation. Specifically, we will use
M : n → m to denote a matrix M with n lines, m columns, and whose values are complex
numbers. Also for two matrices M : n → m and N : m → o, we will use MN : n → o to
denote the matrix multiplication of M with N . Finally, given a linear map f : V → W such
that V and W have dimension n and m, respectively, we will use Mf : m → n to denote the
corresponding matrix.
Exercise 6.

Let B ⊆ V , C ⊆ W be bases for vector spaces V and W , respectively. Show that the set
{b ⊗ c | b ∈ B, c ∈ C} is a basis for V ⊗ W .

Consider matrices M : n → m and N : o → p. Their tensor M ⊗ N : n · o → m · p (also
called Kronecker product) is defined by,

M ⊗ N =


M1,1 · N, . . . , M1,m · N

...
...

...
Mn,1 · N, . . . , Mn,m · N
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Exercise 7.
Consider the matrices in exercise 2. Determine each of the following:

1. H ⊗ Id

2. Id ⊗ X

3. Id ⊗ (H · Z · H)

Definition 5 (Tranpose). Let A be a matrix. A[j, k] represents the j-th row , k-th column
element of A. The transpose of A is

AT [j, k] = A[k, j] (1)

Definition 6 (Conjugate).
A[j, k] = A[j, k] (2)

Definition 7 (Adjoint).
A† = (AT ) = (AT ) (3)

or
A†[j, k] = A[k, j] (4)

1.2 Inner product spaces

Recall that for some complex number c the expression c∗ denotes the complex conjugate of c.

Definition 8 (Inner product space). An inner product space is a vector space V equipped with
a function ⟨·, ·⟩ : V × V → C (the inner product) that satisfies the conditions,〈

v,
∑
i≤n

sivi

〉
=

∑
i≤n

si · ⟨v, vi⟩ ⟨v, w⟩ = ⟨w, v⟩∗

⟨v, v⟩ ≥ 0 ⟨v, v⟩ = 0 entails v = 0

for all v, vi, w ∈ V and si ∈ C. 2

Recall that a norm over a vector space V provides a notion of length to the vector space
and is formally defined as a function ∥ · ∥ : V → [0, ∞) such that the following conditions are
satisfied,

∥v∥ = 0 iff v = 0 ∥s · v∥ = |s| · ∥v∥ ∥v + w∥ ≤ ∥v∥ + ∥w∥

for all v, w ∈ V , s ∈ C. Moreover, every inner product space V induces a norm ∥·∥ : V → [0, ∞)
defined by ∥v∥ =

√
⟨v, v⟩.

As we will see, the mathematical representation of the state of n-qubits is a vector v ∈ C2n

with norm ∥v∥ = 1.
2Since we assume that all vector spaces at hand are finite-dimensional we can see inner product spaces as

Hilbert spaces.
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Exercise 8 (Vector normalisation).
Let v ∈ V be a vector. Show that, ∥∥∥∥ v

∥v∥

∥∥∥∥ = 1

Definition 9 (Orthonormal basis). Two vectors v, w ∈ V are said to be orthogonal to each
other if ⟨v, w⟩ = 0. A basis B for an inner product space V is called orthonormal if all elements
of B have norm 1 and all elements v ̸= w ∈ B are orthogonal to each other.

Exercise 9.
Show that the basis {(1, 0), (0, 1)} for C2 is orthonormal.

Definition 10 (Tensor). Let V and W be two inner spaces. Their tensor, denoted by V ⊗ W ,
is the tensor of V and W as vector spaces equipped with the function,〈∑

i≤n

si(vi ⊗ wi),
∑
j≤m

rj(vj ⊗ wj)
〉

=
∑

i≤n,j≤m

s∗
i rj · ⟨vi, vj⟩ · ⟨wi, wj⟩

When working with linear maps f : V → W between inner product spaces V and W we are
often interested in those maps that are isometric.

Definition 11 (Isometry). Consider inner product spaces V and W and a linear map f : V →
W between them. We call f an isometry if the equation,

⟨v1, v2⟩ = ⟨f(v1), f(v2)⟩

holds for all v1, v2 ∈ V . Equivalently, f is an isometry iff ∥v∥ = ∥f(v)∥ for all v ∈ V .

A key property of isometries is they always send unit vectors to unit vectors (because
isometries preserve norms). In the particular case of V = W = C2n , this means that quantum
states are always mapped to quantum states (and not to something else).

Additionally, quantum physics postulates that quantum operations on an isolated system
must be reversible. In other words, maps f : V → W representing pure quantum operations
must have an inverse f−1 : W → V which satisfies f−1 · f = f · f−1 = id. Together with the
notion of an isometry, this condition gives rise to the notion of a unitary map.

Definition 12 (Unitary maps). Let V and W be inner product spaces. A linear map f : V → W

is called unitary if f is an isometry and surjective3.

Postulate 1 (Quantum state and state transition). The state of an isolated quantum computer
is given by a unit vector in the space C2n for some finite number n – the number n corresponds
to the number of available qubits. State transitions arise via unitary maps, more concretely the
state of an isolated quantum computer changes by an application of a unitary map. 4

The notion of a unitary map can also be formulated via matrices, and often this alternative
formulation is easier to work with: let us consider a linear map f : V → V and its matrix
representation Mf : n → n. Then f is unitary iff M †

f Mf = Mf M †
f = I.

3Both conditions entail that f has an inverse f−1.
4See a more general version of this postulate in Section 2.2 of [NC02]
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Exercise 10.
Show that the following two maps are unitary:

• f : C2 → C2 defined by f(1, 0) = (0, 1) and f(0, 1) = (1, 0).

• g : C2 → C2 defined by g(1, 0) = 1√
2(1, 0) + 1√

2(0, 1) and g(0, 1) = 1√
2(1, 0) − 1√

2(0, 1).

Consider a linear map f : V → W between inner product spaces V and W . There exists a
unique linear map f † : W → V such that for all v ∈ V and w ∈ W the equation,

⟨f(v), w⟩ = ⟨v, f †(w)⟩

holds. This map is precisely the functional representation of M †
f .
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